Display Abstract

Title The (discrete and continuous) fractional Laplacian

Name Pablo R Stinga
Country USA
Email stinga@math.utexas.edu
Co-Author(s) O. Ciaurri, L. Roncal, J. L. Torrea, J. L. Varona, C. Zhang
Submit Time 2014-02-25 15:37:58
Session
Special Session 43: Harmonic analysis tools for fluid mechanics
Contents
Important equations in fluid dynamics involve nonlocal diffusions typically modeled by the fractional Laplacian \cite{Constantin-Majda-Tabak}. These kind of nonlocal operators received a great deal of attention in the past years, especially since the appearance of the works by Luis Caffarelli and collaborators \cite{Caffarelli-Salsa-Silvestre, Caffarelli-Silvestre, Caffarelli-Vasseur}. In this talk we shall discuss a novel point of view to understand fractional Laplacians: the \textit{semigroup language} approach. This method was introduced in \cite{Stinga}. With this method at hand we can generalize the Caffarelli--Silvestre extension problem to positive operators other than the Laplacian in the whole space \cite{Stinga-Torrea} and then prove Harnack's inequalities for a large class of fractional operators \cite{Stinga-Zhang}. Moreover, we are able to define the fractional powers of the discrete Laplacian on a mesh of size $h$ and to show that it converges to the fractional Laplacian on the whole space in the discrete supremum norm as $h\to0$ \cite{Discreto}. Bibliography \bibitem{Caffarelli-Salsa-Silvestre} L. Caffarelli, S. Salsa and L. Silvestre, {Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian}, \textit{Invent. math.} \textbf{171} (2008), 425--461. \bibitem{Caffarelli-Silvestre} L. Caffarelli and L. Silvestre, {An extension problem related to the fractional Laplacian}, \textit{Comm. Partial Differential Equations} \textbf{32} (2007), 1245--1260. \bibitem{Caffarelli-Vasseur} L. Caffarelli and A. Vasseur, {Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation}, \textit{Ann. of Math. (2)} \textbf{171} (2010), 1903--1930. \bibitem{Discreto} \'O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea and J. L. Varona, {The discrete fractional Laplacian}, \textit{preprint} (2014). \bibitem{Constantin-Majda-Tabak} P. Constantin, A. J. Majda and E. Tabak, {Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar}, \textit{Nonlinearity} \textbf{7} (1994), 1495--1533. \bibitem{Stinga} P. R. Stinga, \textit{Fractional Powers of Second Order Partial Differential Operators: Extension Problem and Regularity Theory}, PhD Thesis, Universidad Aut\'onoma de Madrid, 2010. \bibitem{Stinga-Torrea} P. R. Stinga and J. L. Torrea, {Extension problem and Harnack's inequality for some fractional operators}, \textit{Comm. Partial Differential Equations} \textbf{35} (2010), 2092--2122. \bibitem{Stinga-Zhang} P. R. Stinga and C. Zhang, {Harnack's inequality for fractional nonlocal equations}, \textit{Discrete Contin. Dyn. Syst.} \textbf{33} (2013), 3153--3170.