Display Abstract

Title Hardy-Sobolev Inequality for the Biharmonic Operator with Remainder Terms

Name Tommaso Passalacqua
Country Italy
Email tommaso.passalacqua@unimi.it
Co-Author(s) Bernhard Ruf
Submit Time 2014-02-25 08:15:06
Session
Special Session 127: Functional Inequalities and Variational Problems
Contents
We prove that for $N \geq 5$, $\Omega \subset \mathbb{R}^N$ a bounded domain with boundary smooth, $ 1 \leq q < \frac{N}{N-4}$ and $0 \leq \tau < 4$, the critical Hardy-Sobolev constant $C_{HS}$ does not depend on all the traces of the space $H^2(\Omega)$, i.e. we prove that the critical Hardy-Sobolev constant with Navier conditions coincides with the constant with Dirichlet conditions. Moreover, in the same assumptions, we prove two improvements of the Hardy-Sobolev inequality, with Navier and with Dirichlet boundary conditions. In the first case we prove that there exists a positive constant $C=C(N,q,\tau)$ such that the following critical Hardy-Sobolev inequality holds for any $u \in H^2_\vartheta(\Omega)$ and for any $1 \leq q < \frac{N}{N-4}$ $$ \int_\Omega |\Delta u|^2 dx \geq C_{HS} \left(\int_\Omega \frac{|u|^{\sigma}}{|x|^\tau} dx\right)^{\frac{2}{\sigma}} + C\left(\int_\Omega |u|^q dx\right)^{\frac{2}{q}}, $$ with $C_{HS}=C_{HS}(\tau)$ the critical Hardy-Sobolev constant. In the second case we prove that there exists a positive constant $C=C(N,q,\tau)$ such that for any $u \in H^2_0(\Omega)$ and for any $1 \leq q \leq \frac{N}{N-4}$ $$ \int_\Omega |\Delta u|^2 dx \geq C_{HS} \left(\int_\Omega \frac{|u|^{\sigma}}{|x|^\tau} dx\right)^{\frac{2}{\sigma}} + C||u||_{L^q_w(\Omega)}^2. $$ Both results are sharp in $q$.