Display Abstract

Title Exponential type integrators for abstract quasilinear parabolic equations with variable domains

Name Ces\'areo Gonz\'alez
Country Spain
Email ome@am.uva.es
Co-Author(s)
Submit Time 2014-02-25 07:58:10
Session
Special Session 49: Advances in the numerical solution of nonlinear evolution equations
Contents
In this talk, I propose an exponential explicit integrator for the time discretization of quasilinear parabolic problems. My numerical scheme is based on splitting methods. In an abstract formulation, the initial-boundary value problem is written as an initial value problem on a Banach space~$X$ \begin{equation} u'(t) = A\big(u(t)\big) u(t)+ b(t), \quad 0 < t \leq T, \qquad u(0) \,\,\,{\rm given}, \end{equation} involving the sectorial operator $A(v):D(v) \to X$ with variable domains $D(v) \subset X$ with regard to $v \in V \subset X$. Under reasonable regularity requirements on the problem, I analyze the stability, the convergence behaviour and some numerical examples of the numerical methods. \begin{thebibliography}{4} \bibitem{GonMe} C.~Gonz\'alez and M.~Thalhammer, \emph{A second-order Magnus type integrator for quasilinear parabolic problems}. Math. Comp., 76, 257, (2007) pp. 205-231. \bibitem{HochLu} M.~Hochbruck and Ch.~Lubich, \emph{On Magnus integrators for time-dependent Schr\"odinger equations}. SIAM J.~Numer.~Anal. 41 (2003) pp. 945-963. \bibitem{HochOs} M.~Hochbruck and A.~Ostermann, \emph{Exponential multistep methods of Adams-type}. BIT, vol. 51, pp. 889-908 (2011). \bibitem{Thal} M.~Thalhammer, \emph{Convergence analysis of high-order time-splitting pseudospectral methos for nonlinear Schr\"odinger equations}. SIAM J.~Numer.~Anal. 41, vol. 50, No. 6, (2012), pp. 3231-3258. \end{thebibliography}