Display Abstract

Title Size-structured population dynamics with diffusion

Name Nobuyuki Kato
Country Japan
Email nkato@se.kanazawa-u.ac.jp
Co-Author(s)
Submit Time 2014-02-25 04:27:09
Session
Special Session 85: Transport processes in biology: Modelling and analysis
Contents
We are concerned with size-structured population models with spacial diffusion. Consider a biological population living in a habitat $\Omega \subset \mathbb{R}^{n}$ with smooth boundary $\partial \Omega$. Let $p(s,t,x)$ be the population density of size $s\in [0,s_{\dagger})$ and position $x\in \Omega$ at time $t\in [0,T]$, where $s_{\dagger}\in (0,\infty)$ is the maximal size, $T\in (0,\infty)$ is a given time. Let $\Omega_{T}:=(0,T)\times \Omega$, $Q:=(0,s_{\dagger})\times \Omega$, $\mathcal{Q}_{T} := (0,s_{\dagger})\times (0,T)\times \Omega$ and $\Sigma_{T} := (0,s_{\dagger})\times (0,T)\times \partial \Omega$. We first consider the following linear model: \begin{equation*} \begin{aligned} & \partial_{t}p + \partial_{s}(g(s,t)p) = \Delta p(s,t,x) -\mu (s,t,x) p(s,t,x) + f(s,t,x), && \text{in $\mathcal{Q}_{T}$}, \\ & g(0,t) p(0,t,x) = C(t,x)+\int_{0}^{s_{\dagger}} \beta (s,t,x) p(s,t,x) \, ds, && \text{in $\Omega_{T}$}, \\ & \frac{\partial p}{\partial \nu} (s,t,x) = 0, && \text{on $\Sigma_{T}$},\\ & p(s,0,x) = p_{0}(s,x), && \text{in $Q$}. \end{aligned} \end{equation*} Here $g(s,t)$ represents the growth rate depending on individual's size $s$ and time $t$. The functions $\mu(s,t,x)$ and $\beta(s,t,x)$ stand for the mortality and fertility rates, respectively. The spacial diffusion is prescribed by Laplacian $\Delta$ and the Neumann boundary condition. The functions $f(s,t,x)$ and $C(t,x)$ represent certain inflows of $s$-size and zero-size populations, respectively, from outside. We introduce a notion of mild solution and establish the existence of a unique mild solution. Next, we develop a nonlinear problem in which mortality and fertility rates are supposed to depend on the population density $P(x,t)= \int_{0}^{s_{\dagger}} p(s,t,x)\, ds$ in position $x$ at time $t$.