Display Abstract

Title Solvability and Long time Behavior of Nonlinear Parabolic Equation under the Third Type Boundary Condition

Name Kerime Kalli
Country Turkey
Email kerime@hacettepe.edu.tr
Co-Author(s) Kamal Soltanov
Submit Time 2014-02-25 03:45:43
Session
Special Session 86: Nonlinear evolution equations and related topics
Contents
We study some third type boundary value problems for a general semilinear parabolic equation in divergence form: \begin{equation} \frac{\partial u}{\partial t}+Lu+g(x,t,u)=h(x,t),\text{ }(x,t)\in Q_{T}\equiv \Omega \times (0,T] \tag{1} \end{equation} \begin{equation} u(x,0)=u_{0}(x),\text{ } x\in\Omega\subset% %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ^{n}, n\geq3 \tag{2} \end{equation} \begin{equation} \left. \left( \frac{\partial u}{\partial \nu }+k(x,t)u\right) \right\vert _{\Gamma_{T}}=\varphi (x,t),\text{ } \Gamma _{T}\equiv \partial \Omega \times \lbrack 0,T], T>0 \tag{3} \end{equation} Here $\Omega $ is a bounded domain with sufficiently smooth boundary $\partial\Omega$; $L$ denotes a second order linear elliptic operator in divergence form: \begin{equation*} Lu:=-\overset{n}{\underset{i,j=1}{\sum }}D_{i}(a_{ij}\left( x,t\right) D_{j}u)+% \overset{n}{\underset{i=1}{\sum }}b_{i}\left(x,t\right) D_{i}u+c(x,t)u, \end{equation*} where $a_{ij}$, $b_{i}$ and $c$ are given coefficient functions $\left( i,j=1,...,n\right) $; $g:Q_{T} \times %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion \longrightarrow %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion $ and $k:\Gamma_{T} \longrightarrow %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion $ are given functions; $h$ and $\varphi $ are given generalized functions. For the existence and the uniqueness of the generalized solution of problem (1)-(3), we obtain sufficient conditions for $L,g$ and $k$. Under these conditions we prove that problem (1)-(3) is uniquely solvable in corresponding spaces by applying a general existence theorem. For the long time behavior of solution, we obtained the existence of the absorbing sets in two different spaces for the autonomous case of the problem.