Display Abstract

Title Conditions for correct solvability of a first order linear differential equation with degeneracy at infinity

Name Lea Dorel
Country Israel
Email lela@post.tau.ac.il
Co-Author(s) Leonid Shuster
Submit Time 2014-02-26 12:12:24
Contents
We consider the first order linear differential equation \begin{align}\label{e1} -y'(x)+q(x)y(x)=f(x), \ x \in R \end{align} where $f \in L_{p}(R)$, $p\in [1,\infty)$, $0\leq q \in L_{1}^{loc}(R).$ Introduce the notation \begin{align*} q_{0}(a)=\underset{x\in R}{inf}\int\limits_{x-a}^{x+a}q(t)\,dt, \ \ a\in [0,\infty). \end{align*} For a continuous function $\theta$ such that $\theta(x)>0 $ for each $x \in R,$ let $$L_{p,\theta }(R) = \{f\in L_{p}^{loc}(R): \|f\|_{p,\theta}^{p}=\int\limits_{-\infty}^{\infty}|\theta(x)f(x)|^{p}\,dx0$ for some $ a\in (0,\infty)$" is the minimal one to guarantee the fulfillment of conditions (i) and (ii). Here we consider the case when $\|q\|_{L_{1}(R)}=\infty, \ q_{0}(a)=0$ for all $ a\in [0,\infty)$ and find necessary and close to them sufficient conditions for $\theta$ and $q$ under which (i) and (ii) are satisfied. \begin{thebibliography}{99} \bibitem{r1} Chernyavskaya N., {\it Conditions for correct solvability of a simplest singular boundary value problem}, Math. Nachr. {\bf 1} (2002), 5--18. \bibitem{r2} Lukachev M., Shuster L., {\it On uniqueness of the solution of a linear differential equation without boundary conditions}, Functional Differential Equations {\bf 2} (2007), 337--346. \end{thebibliography}