Contents |
Self-renewal is a constitutive property of stem cells. Testing the
cancer stem cell hypothesis requires investigation of the impact of self-renewal on
cancer expansion. To understand better this impact, we propose a mathematical model describing dynamics of a continuum of cell clones structured by the self-renewal
potential. The model is an extension of the finite multi-compartment models of interactions between normal and cancer cells in acute leukemias. It takes a form of a system of integro-differential equations with a nonlinear and nonlocal coupling, which describes regulatory feedback loops in cell proliferation and differentiation process. We show that such coupling leads to mass concentration in points corresponding to maximum of the self-renewal potential and the model solutions tend asymptotically to a linear combination of Dirac measures.
Furthermore, using a Lyapunov function constructed for a finite dimensional counterpart of the model, we prove that the total mass of the solution converges to a globally stable equilibrium. Additionally, we show stability of the model in space of positive Radon measures equipped with flat metric. The analytical results are illustrated by numerical simulations. |
|